Effect of distal histidines on hydrogen peroxide activation by manganese reconstituted myoglobin.
نویسندگان
چکیده
Myoglobins provide an opportunity to investigate the effect of the secondary coordination sphere on the functionality and reactivity of non-native metal porphyrins inside well-defined protein scaffolds. In this work, we reconstituted myoglobin by the replacement of natural heme with manganese(iii) protoporphyrin IX and firstly investigated the effect of distal histidine on the reaction of Mn(III) porphyrin with H2O2 and one-electron oxidation of ABTS. We have prepared L29H, F43H, H64F, L29H/H64F, F43H/H64F, L29H/F43H and L29H/F43H/H64F mutants and reconstituted apo-myoglobins with manganese(iii) protoporphyrin IX. Distal histidine at the 64 position plays an essential role in binding H2O2 through hydrogen bond formation, which facilitates the coordination of H2O2 to the Mn center. The second histidine at the 43 position is important in the cleavage of the O-O bond and to form the highly valent Mn(iv)-oxo intermediate. His29 has less efficiency to activate H2O2, because it is too far from the Mn center. The cooperative effect of dual distal histidines at positions 64 and 43 on the activation of H2O2 was observed and the F43H Mn(III)Mb mutant exhibited 5-fold and 10-fold reaction rate increases in the activation of H2O2 and one-electron oxidation of ABTS versus wild-type Mn(III)Mb. This is different from the distal histidine effect on the H2O2 activation by heme in Mb. This work will provide new insights to understand the fundamental chemistry of manganese in oxidation, and further construct biomimetic Mn models for peroxidase, inside or outside of protein scaffolds.
منابع مشابه
Catalytic Decomposition of Hydrogen Peroxide in the Presence of Synthesized Iron-Manganese oxide Nanocomposites via Different Methods
The special application of iron-manganese oxide nanocatalysts has been investigated in decomposition of hydrogen peroxide. In this research, iron-manganese oxide nanocomposites were synthesized by co-precipitation, sol-gel and mechanochemical methods using iron (III) nitrate, iron (II) sulfate and manganese (II) nitrate as starting materials. These nanocomposites were prepared on the variou...
متن کاملNMR reveals hydrogen bonds between oxygen and distal histidines in oxyhemoglobin.
Compared with free heme, the proteins hemoglobin (Hb) and myoglobin (Mb) exhibit greatly enhanced affinity for oxygen relative to carbon monoxide. This physiologically vital property has been attributed to either steric hindrance of CO or stabilization of O(2) binding by a hydrogen bond with the distal histidine. We report here the first direct evidence of such a hydrogen bond in both alpha- an...
متن کاملProstaglandin H synthase-dependent mutagenic activation of benzidine in a Salmonella typhimurium Ames tester strain possessing elevated N-acetyltransferase levels.
Watanabe and colleagues (Biochem. Biophys. Res. Commun. 147: 974-979, 1987) have constructed plasmid-containing derivatives of Salmonella typhimurium Ames tester strain TA1538 with high levels of acetyltransferase activities. In this paper, we describe the mutagenic response of one of these strains, TA1538/1,8-DNP6 (pYG 121), to the bladder carcinogen benzidine and other arylamines. Strain TA15...
متن کاملRegulating the Coordination State of a Heme Protein by a Designed Distal Hydrogen-Bonding Network
Heme coordination state determines the functional diversity of heme proteins. Using myoglobin as a model protein, we designed a distal hydrogen-bonding network by introducing both distal glutamic acid (Glu29) and histidine (His43) residues and regulated the heme into a bis-His coordination state with native ligands His64 and His93. This resembles the heme site in natural bis-His coordinated hem...
متن کاملGasniGraphene-manganase oxide nanocomposite as a hydrogen peroxidase sensor
A feasible and fast method to fabricate hydrogen peroxide sensor was investigated by graphene-manganase nanocomposite carbone paste electrode. In the present work, in first step, the graphene was synthesized by chemical method and in second step, manganese oxide nanoparticle was doped on graphene. graphene-manganase nanocomposite was characterized by FTIR and SEM. The nanocomposite shows a high...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Metallomics : integrated biometal science
دوره 5 7 شماره
صفحات -
تاریخ انتشار 2013